If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(y^2)+14y+2=0
a = 1; b = 14; c = +2;
Δ = b2-4ac
Δ = 142-4·1·2
Δ = 188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{188}=\sqrt{4*47}=\sqrt{4}*\sqrt{47}=2\sqrt{47}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{47}}{2*1}=\frac{-14-2\sqrt{47}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{47}}{2*1}=\frac{-14+2\sqrt{47}}{2} $
| -7(a-3)+5=11-7a | | 11=12p | | .5x+2=(4x+1)/4 | | 35-7=2(2x+4) | | 9x-11=10+12x= | | 5-3g=4g-16 | | 6(2x-3)-1=35 | | x+50+3x-20=180 | | x=50+3x-20 | | -2(k-12)-7k=12-9k | | -3x+50=-20 | | 18+6x=0 | | 18+6x=72 | | 6y^2-55y+9=0 | | 0=-16t^2+16t+3 | | 4x−5=2+3(x−3)4x-5=2+3(x-3) | | 8z+7z=6 | | -10x+11+5x=36 | | 2/3-x/4=5/12= | | 6x-13=-2x+9 | | 1200+400x=4000 | | -4p-3(7p+5)=35 | | 1200*400x=4000 | | 1200+400x=5600 | | 6p+21=33 | | 1x-6=-6(1x-28) | | x+6/5=4/5(x) | | (2/3)x-(1/6)=(5/12) | | -c/2-9=2 | | 4(1+0.5m)=7m4 | | 3-13=z|-4 | | 5x-6+7x+12=180 |